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This paper presents a methodology for the study of thermal de~mposition kinetics of 
polymeric materials by means of dynamic thermogravimetry (linear temperature increase). 
We have developed a general analytical solution relating conversion to temperature by 
means of integral procedures. This equation is a recurrent series providing a rigorous 
method to determine kinetic parameters such as activation energy and frequency factor. 
We have also conducted an extensive review of the different computing methods available 
in the literature leading to the determination of the kinetic parameters of thermal 
decomposition reactions. We have compared the results obtained by using the general 
analytical solution with those evaluated by means of established methods which were 
classified into three categories: integral, differential and special methods. Finally we have 
analyzed the accuracy of the computing methods by considering the simplifications in- 
herent in each of them. 
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A 
A” 
d2f/dT” 
df /dT 

f” 
K 

pre-exponential or frequency factor (g’-” s-‘) 
modified pre-exponential factor (s-l) 
second conversion derivative (K-‘) 
first conversion derivative (K-l) 
activation energy (kJ mol-‘) 
conversion 
constant obtained by linear regression (method of Reich and 
Stivala) 
reaction order 
gas constant (8.315 J mol-’ K-l) 
time (s) 
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temperature (K) 
weight of solids at a time t (g) 

initial weight of solids (g) 
residual weight of solids (char remaining at the end of thermal 
decomposition) (g) 

Greek letters 

P heating rate (K s-l) 
& relative error (%) 

m conditions at maximum rate of decomposition 

Dynamic thermogravimetry (with linear temperature increase) is widely 
used as a tool to study the degradation of different polymeric materials, to 
elucidate the order of reaction and also to estimate other kinetic 
parameters such as the activation energy, the frequency factor and the 
rate of decomposition [l]. The greater precision of experimental values 
obtained from TG in comparison with DTA and DSC is attributable to 
the accuracy in the measurement of mass [2]. 

The advantages of determining kinetic parameters by non-isothermal 
methods rather than by conventional isothermal studies are as follows. 

(1) The kinetics can be established over an entire temperature range in 
a continuous manner. 

(2) It is possible to obtain a lot of information with a single sample, i.e. 
thermal parameters such as the temperature at maximum decomposition 
rate, characteristic temperatures, and kinetic parameters. 

(3) The determination of kinetic and thermal parameters using a single 
sample removes problems arising from different samples, i.e. sample-to- 
sample error is avoided. 

(4) When a sample undergoes considerable reaction in being raised to 
the required temperature, the results obtained by isothermal methods are 
questionable because some degradation may occur during the pre-heating 
period, particularly when the temperature of onset of reaction is con- 
siderably lower than the temperature of the isothermal trials. 

It was pointed out that the calculated values of the Arrhenius doublet, 
i.e. activation energy and frequency factor, especially for non-isothermal 
heterogeneous processes, have only limited validity and cannot be utilized 
for pin-pointing the rate-controiling mechanism solely on the basis of the 
values evaluated. It is known that the degradation of a polymer is a very 
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intricate phenomenon composed of various elementary reactions that are 
difficult to analyze separately and whose quantitative contributions to the 
global degradation process are virtually impossible to evaluate. For these 
reasons, even if the overall process has no real significance with regard to 
the reaction mechanism, it is useful as a means of quantifying the rate of 
reaction and for design purposes. Mathematical modelling of thermal 
decomposition reactions helps in understanding the process being studied, 
in checking the validity of assumptions and in deducing quantitative con- 
clusions therefrom. The latter is essential to achieve engineering calcu- 
lations leading to the determination of the reactor size. 

Concerning the activation energy of the reaction, the literature men- 
tions great variations for a given polymeric material. These differences 
depend on several factors. 

(1) Preparation method of the polymer, i.e. anionic, thermal or other 
type of polymer preparation, and lattice defects, weak links and impurities 

PI* 
(2) Molecular weight of the polymer [4-71. 
(3) experiments techniques and operating conditions, i.e. sample 

mass, sample particle size, heating rate, mass flow and type of gas, 
and thermal contact between sample and sample holder [2, 81. 

The mathematical treatment of kinetic equations makes use of one of 
the following methods: a) integral; b) differential; c) approximate or 
special. It has been found that these methods do not reproduce the values 
of activation energy and reaction order when the same data are taken for 
computation [9, lo]. 

The goal of this paper is to present a methodology for the study of 
thermal decomposition kinetics which comply with the following require- 
ments (the mathematical procedure presented in this paper will be applied 
to the thermal decomposition of anionic polystyrene). 

(1) development of a general analytical solution by means of integral 
procedures. 

(2) Revision of the different methods available: integral, differential 
and special methods. 

(3) Fitting of experimental data by linear regression in order to 
determine the kinetic parameters by using the general analytical solution 
presented in this paper, and comparing them to those obtained with other 
methods reported in the literature. 

THE~RETrCAL CONSIDERATIONS 

The rate of weight loss in the process of thermal decomposition 
depends on weight and temperature according to the equation [II] 
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Many heterogeneous decomposition reactions of solids are described by 
the model of pseudo-homogeneous kinetics. Therefore 

(2) 

According to Altorfer [12], some conditions have to be fulfilled to enable 
an ideal course of reaction as represented by the n-order reaction kinetics, 
i.e. a well-defined, homogeneous sample temperature with no reverse 
reaction. The latter implies negligible partial pressure of the decomposi- 
tion gas. Therefore, a continuous flow of gas is recommended in order to 
evacuate volatilization products as they are formed. 

The variation of the constant rate with the temperature is generally 
accepted to be of the Arrhenius type, because this relationship dominates 
physical and chemical phenomena 

k(T) = A exp - FT 
( > (3) 

The cross term q(w, T) takes into account the interactions between the 
weight and the reaction temperature. These interactions arise from 
different factors: i) variation of residual weight with operating conditions; 
ii) variation of kinetic parameters with conversion in the case of 
competitive reactions; iii) modifications of the sample physical properties 
during the decomposition. Because it is very difficult to obtain an equation 
considering all these factors, and in order to facilitate further derivation, 
the term q(w, T) is generally assumed equal to unity. 

Dynamic thermogravimetry is often carried out at constant heating 
rate. In such a case 

T=T,+pt (4) 

Therefore 

Taking into account the relationship between weight and conversion as 
well as previous considerations 

where 

w, - w 
f=- (7) 

wo - wr 
A* = Aw;;-’ (8) 



Several expansions and semi-empirical approximations have been 
suggested [13] for the temperature-containing integral: the asymptotic 
expansion, the van Krevelen et al. approximation, Doyle’s approximation, 
etc. Other authors have stated that the kinetic analysis of dynamic 
thermogravimetry leads inescapably to integral equations which require 
numerical solution [14]. Moreover, Coats and Redfern [15] reported that 
the temperat~e-containing integral has no exact solution; therefore they 
used an approximation. However, the integral does have a primitive 
analytical solution. Making the substitution z = -E/(RT) and after a few 
consecutive integrations by parts, it is possible to reach a recurrent series. 
The general solution is 

n = 1 (9a) 

1 - (1 -f)‘-” A*E 

l-n 
=s,[exp(-~)]~(-l)‘i’i!(~it* n#l (9b) 

When the sum is truncated at the second term (i = 2), the kinetic equation 
developed by Coats and Redfern [15] may be found. Their simplification 
is quite satisfactory when the thermal energy (RT) is significantly less than 
the activation energy. This case is often found for the thermal decomposi- 
tion of solids. However, if RT tends to E, i.e. low activation barrier 
and/or high temperature, it is necessary to take a greater number of terms 
in the general analytical solution. 

Conversion can be singled out from eqns (9a) and (9b), whereas first 
and second conversion derivatives follow readily from eqn. (6) 

f = 1 -exp(-F [exp(-+-)I 

x i (-l)“‘i! g 

i-l 

i=l (7 > 

f =l-[l-(1-n)~[exp(-~)] 

x 2 (_,)i,, (~)i-‘l”“-~’ 
i=l 

$=$ [exp(-$)](l -f) 

n=l 

nfl 

Vn 

Vn 

OW 

ww 

(11) 

(12) 

Because the m~imum rate of decomp~ition is reached when d2f /dT2 = 
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0, the activation energy can be evaluated from eqn. (12) 

However, the values of temperature, conversion and first conversion 

TABLE 1 

Summary of integral methods 

Qn (13) 

Itl 

INTEGRAL METHODS m. 

In 
1 

van Krevelen 

“(::8”“] = l~[~(~)-m~]+(~+l)lnT; n#l 

RTlil 
et al. (1951) (15, 

In[-In(l-f)] = In $.(~jffmm& 

[ 

+(&+l)hT; n=l 

RTIII I 

In S --2---- 

Kissinger (1957) 
[ T,2 n(1 -fmf”-’ 1 

= In(y)-C$ n*l 

i 1 

(16 

h J$ = in(~j-~* n=l 

,,l-WV” 5_&__@.“+, 
1 l-n I RT? ’ 

r2tF(la963) 

In[- In (1 - f)] = + 8; n = 1 

where: 6 = T - TsRr;s T et which f = (1 - &) for n = 1 (17 

andTg=Tmforntl) 

A = s ex+i$j 
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TABLE 2 

Sudan of ~~~renti~ methods 

Vachuru 81 Wborfi (lS7l) 

derivative at maximum rate of decomposition are not generally known 
and must be estimated graphically from TG data. Thus, eqn. (13) is useful 
to obtain an approximate value of the activation energy. This estimate can 
also serve as the initial value in iterative calculations leading to the 
determination of activation energy through the general analytical solution. 

We have made an exhaustive revision of the different methods reported 
in the literature. Tables l-3 summarize integral [16-191, differential 120, 
211 and special methods 122-251, respectively. Special methods are those 
that cannot be classified as integral or differential methods, and they are 
generally based on particular couples of experimental data or they need 
data previously evaluated from graphical plots. The equations shown in 
these tables are in the form used for regression analysis. When applying 
integral methods, the values of order of reaction have to be assumed 
(n = 0, l/2, 1, 3/2, 2). Th e es or b t d er is chosen by means of analysis of 
variance (ANOVA). 

Samples were obtained from Scientific Polymer Products (anionic 
preparation and polydispersity below 1.06). The substance used in this 
study was a white powder having a molecular weight of A& = 
7800 g mot-l. The thermal decomposition of the polystyrene samples was 
carried out in a thermal analyzer (Netzsch, Gertitebau Model STA 409). 
The operating conditions were the following: heating rate, OSO- 
11SO K min-” and sample weight, 6.0-6.7 mg. Degradations were con- 
ducted at atmospheric pressure and gases produced by decomposition 
were swept out by a flow of air at 100 ml min-*. 
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TABLE 3 

Summary of special’ methods 

SPECIAL METHODS Es. 

R&h (1964) --- 
Tt T2 

T, and T2 are measured 

at the same conversion value 

m 

Friedman (1969) 

,” (~/~)~ 

rl= (dfldi) 

Tm(Tm-I) $, 
I I 

Tfl -fm) 

E -=---- 
R 1 -fm 

Reich & StlvaIa (Wfl) 
A=-, n+l (2s) 

(t -n)R ’ 

where In K is the intercept of the line 

E = R~fn[~$~2~] 

AT = T, -To 

P0pescu & Segal(l993) 
TO and T1 are characteristic temperatures 

(W 

RESULTS AND DISCUSSION 

We have analyzed the effect of t~ncating, at various levels, the series 

S =*$ (-l)‘“‘i! $ 
( > 

j-l (14) 

When the series is truncated at i = 1, the sum becomes equal to 1 and 
when truncated at i = 2 the sum is then equal to S = 1 - ZRT/E. It should 
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be noted that this case corresponds to the equation proposed by Coats and 
Redfern (1964) [15]. In order to study the effect of truncation (i = 1 or 
i = 2), the relative error due to this approximation was calculated 
according to the equation 

E(%)= 
S (i = 00) -S(i=10ri=2)lW 

S(i=a) (15) 

As expected, the relative error is much greater when we truncate at i = 1 
than for i = 2 (Fig. 1). Furthermore, we note an increase in the relative 
error when the temperature increases or when the activation energy 
decreases. This means that when thermal energy (RT) becomes important 
compared to the activation energy (E), the error due to the truncation 

8 

6 

500 550 600 660 

0-c 
500 550 600 650 

TEMPERATURE (K) 

1. Variation of relative errors with temperature for various arbitrary activation 
energies when truncating, at the first (i = 1) or second (i = 2) terms, the series 
CT_“=, (-l)‘+‘i! (RT/E)‘-‘. 
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becomes quite significant. However, this error is not nearly of the same 
magnitude when we determine actication energy, as evidenced in Table 4. 
It is apparent that for the thermal decomposition of polystyrene, at the 
indicated operating conditions, truncation at i = 2 is entirely justified. 
Care must however be taken when thermal decomposition is performed at 
high temperatures and/or subjected to low activation barrier. It is 
important to note that only first-order kinetics have been considered. 
Reproducibility trials have shown that the maximum error committed 
between two thermograms is less than 0.5%. 

Figure 2 illustrates the thermal anger-prints of polystyrene. The 
conversion curves as well as the two conversion derivatives were obtained 
from eqns. (lOa), (11) and (12) by using the kinetic parameters previously 
estimated. The conversion experimental data fit perfectly to the theoreti- 
cal curve. However, a certain disparity becomes visible for the first 
conversion derivative and it is much more significant for the second 
conversion derivative. Similar disparities have been previously reported 
by Carrasco [26] for the thermal decomposition of calcium oxalate 
monohydrate. These findings indicate that the application of computing 
methods based on derivatives (especially the second derivative) can 
generate imprecise kinetic parameters, as will be discussed later. 

Table 4 summarizes the results obtained by using the general analytical 
solution and some representative methods reported in the literature. 
Confidence intervals were calculated at 95% confidence level. 

The application of the general analytics solution resulted in the 
following kinetic parameter for the the~al decomposition of poly- 
styrene: E = 130.1 f 0.3 kJ mol-’ and A* = 2.42 X 108 s-‘. When truncat- 
ing the series at i = 2, the relative errors involved were as low as 0.1% for 
the activation energy and 4% for the pre-exponential factor. 

The method of van Krevelen et al. involves two important 
approximations. 

(1) 1;\1 (temperature at maximum rate of decomposition) must be 
evaluated by a graphical procedure from the Af /AT versus T plot before 
applying regression analysis. It was demonstrated that the value of the 
activation energy could be influenced by T,, if the latter is not adequately 
chosen. 

(2) The authors approximate the exponential integral by making the 
substitution 

This is almost true when the reaction proceeds entirely in the range 
0.9T, < T < l.lT,. 

Figure 3 shows the relative error made when appiying this approxima- 
tion. It is clear that the validity of this assumption is not correct at low 
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f 

TEMPERATURE (K) 

Fig. 2. Variation of conversion, first conversion derivative and second conversion 
derivative as a function of temperature. Curves were obtained from eqns. (lOa), (11) and 
(12) by taking the kinetic parameters previously evaluated by regression analysis. 

temperatures. These reasons can explain why the activation energy 
obtained is 8% higher than that calculated by using the analytical solution. 

The Kissinger method is based on the mathematical condition 
d2f/d2** = 0, i.e. conditions giving a maximum rate of decomposition. The 
equation developed by Kissinger is exact. However, it is necessary to 
perform various TG experiments at different heating rates. In order to 
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Fig. 3. Variation of retative errors as a function of temperature when considering the 
approximation, as proposed by van Krevelen et al. exp(-E/W) = (0.368T/T~)~‘RT=. 

minimize heat transfer and mass transfer limitations, we performed TG 
runs with approximately the same sample weight (6.0-6.7 mg). The 
heating rates used were 0.5, 1.0, 5.4 and 11.5 K min-‘. Kissinger’s method 
is based on T, values, which must be calculated from graphical plots 
before applying regression analysis. Moreover, because T, is the inde- 
pendent variable, this can introduce additional errors as compared to the 
van Krevelen et al. method. Furthermore, the Kissinger method can be 
applied only if the reaction mechanism remains unchanged when modify- 
ing the heating rate. The activation energy obtained by the Kissinger 
method is 20% lower than that calculated by the general analytical 
solution. On the other hand, the confidence interval (11.9 kJmol_‘) is 
quite high, probably due to the uncertainty in calculating the T, values 
from graphical plots. 

Horowitz and Metzger derived an approximate integral method similar 
to, but even simpler than, that proposed by van Krevelen et al. Moreover, 
they stated that in many cases it is possible to determine the reaction 
order virtually by inspection of the conversion value at the maximum rate 
of decomposition: fm is equal to 1, 0.75, 0.632, 0.556 and 0.5 for n = 0, 
l/2, 1, 3/2 and 2 respectively. Again, this method is subject to intrinsic 
errors due to the graphical evaluation of T,. The activation energy 
calculated by the method of Horowitz and Metzger is 16% higher than 
that obtained by the general analytical solution, However, accuracy is 
satisfactory as shown by the narrow confidence interval (0.7 kJ mol-*). 

Coats and Redfern expanded (before integrating) the ~onversion-con- 
taining integral term (eqn. (6)) in a series and they stated that quadratic 



and high-order terms may be neglected at low conversion. The mathe- 
matical assumption corresponds to a zero-order reaction. The activation 
energy obtained by the method of Coats and Redfem is only 6% lower 
than that evaluated by the general analytical solution for n = 1, thus 
indicating that at low conversion levels, there is no significant difference 
between zero-order and first-order kinetics. 

Differential methods are based on either the first or the second con- 
version derivative. The classical differential method requires the assump- 
tion of reaction order before applying simple linear regression analysis. 
However, it is possible to determine the reaction order from the 
differential equation by separating the independent variables into two 
terms, one containing a function of conversion (ln(1 -f)) and the other a 
function of temperature (l/T) (see Table 2 and eqn. (20)). It is then 
possible to apply a multiple linear regression analysis, where the slope of 
the conversion-containing term yields the reaction order. We obtained a 
reaction order of 1.09 for the thermal decomposition of polystyrene which 
is quite close to that found by ANOVA (first-order kinetics) when using 
the general analytical solution. The activation energies estimated by the 
classical and multiple linear regression (MLR) differential methods were 
very close to that obtained by the general analytical solution, but the 
confidence intervals were much larger. 

The Freeman and Carroll, and Vachusca and Voboril methods have the 
advantage that they calculate the reaction order, unlike the integral 
methods. Both methods yielded approximately the same reaction order as 
well as similar activation energies, the latter being approximately 10% 
greater than that obtained by the general analytical solution. The 
confidence interval as well as the regression coefticient indicate that both 
of these methods possess imprecisions. The Freeman and Carroll method, 
based on the first conversion derivative, revealed that 91% of the 
experimental points can be explained by the correlation; the activation 
energy had a confidence interval of f5.2 kJ mol-‘. However, the Vach- 
usca and Voboril method gave a poor data fitting: only 69% of the 
experimental points could be explained by the correlation, which is 
unacceptable. The confidence interval for the activation energy was as 
high as 10 kJ mol-*. The imprecision of these two methods is, no doubt, 
because both first and second conversion derivatives are calculated from 
differences between two discrete experimental points. Neither differential 
method allows for the calculation of the pre-exponential factor from the 
regression equation. Figure 4 provides a comparison between experimen- 
tal data and predicted values. The latter were evaluated by means of 
mathematical equations resulting from the general analytical solution 
(eqns. (lOa), (11) and (12)). The kinetic parameters used are those 
previously obtained by linear regression. It is obvious that experimental 
conversion and predicted conversion are in very good agreement because 
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IO 

Fig. 4. Comparison between predicted values and experimental data for conversion, first 
conversion derivative and second conversion derivative. Predicted values were calculated 
from eqns. (lOa), (11) and (12) by taking the kinetic parameters previously evaluated by 
regression analysis. 

points fall on the diagonal line. The first conversion derivative graph 
shows, however, that there exists some divergence between theoretical 
results and experimental data. This can be caused by the approximation 
made when the derivative is calculated by difference between two 
adjacent experimental points, i.e. df /dT = Af /AT. The divergence is, 
however, enormous when comparing theoretical results and experimental 
data for the second conversion derivative. We believe that this is due to 
the incorrect computing of experimental second-conversion derivatives, 
which have to be calculated by means of the approximation d2f /dT2 = 
A2f /AT’. This divergence can explain the low accuracy of methods based 
on second conversion derivatives such as the Vachusca and Voboril 
method. 

The special methods were classified as a separate category because the 
determination of the kinetic parameters is obtained from two experimen- 
tal points. This operation was repeated on several occasions using 
different sets of two points, in order to obtain an average value of the 
kinetic parameters. 

The Reich method requires only two points in order to determine the 
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activation energy ((&, I;), (&, T2)) where TG curves are obtained for 
different heating rates; T1 and T, are measured at the same conversion 
value. This method presents the following advantages: (i) no prior 
knowledge of the reaction order is necessary; (ii) it consumes relatively 
little time; (iii) no curve fitting or laborious plots are required. However, 
this method is very subjective because the evaluation of the activation 
energy is achieved for a fixed conversion level. Furthermore, if the 
reaction mechanism varies with different heating rates, then the calculated 
activation energy will be completely false. In order to calculate the 
activation energy according to Reich’s method, we chose as conversion 
value, the conversion at the maximum rate of decomposition because it is 
approximately constant (fm = 0.606) for the various heating rates investi- 
gated (0.5, 1.0, 5.4 and 11.5 K min-‘). The calculated activation energy 
was 18% less than that obtained using the general analytical solution. The 
confidence interval for the activation energy (~20 kJ mol-‘) was too high 
to be acceptable. 

The Friedman method is based on two experimental points at the same 
heating rate. One of these points corresponds to the maximum rate of 
decomposition (T,, fm and (df/dT),), a condition which must be 
evaluated from graphical drawings. The reaction order is calculated by 
averaging the different n’s obtained at each temperature of the TG curve. 
Once II is calculated, the computation of E and A* follows readily. This 
method is very sensitive to parameters at maximum rates of decomposi- 
tion. Values of f and 2’ had to be taken at conversions lower than fm 
because the reaction order calculated with values near the maximum rate 
of decomposition conditions were often meaningless. However, when 
conversion was taken at values higher than fm, n increased continuously. 
Despite the restrictions and limitations of F~edman’s method, the 
activation energy calculated in this way is close (7% higher) to that 
calculated using the general analytical solution. However, the confidence 
interval is relatively high (11 kJ mol-‘). 

Reich and Stivala proposed their method as follows: values of activa- 
tion energy, corresponding to various arbitrarily selected values of ~1, are 
calculated for each of two given pairs off and T. The resulting arbitrary 
values of E are plotted versus the corresponding IZ values, and the region 
bounded by intersecting curves is used to estimate simultaneously the 
actual values of E and n. We have slightly modified the solution method. 
For each pair of conversion values, we have correlated, through linear 
regression, the activation energy as a function of the reaction order. The 
equations obtained were 

14‘ (W mol-I) = 116.1+ 13.0~ (f = 0.09 and 0.27) 

E (l-d mol-‘) = 97.6 + 31.ln (f = 0.27 and 0.46) 

E (kJ mol-I) = 37.6 f 96.6ra (f = 0.70 and 0.81) 
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Intersection 

0.0 0.5 1.0 1.5 2.0 

REACTION ORDER 
Fig. 5. Graphical method used by Reich and Stivala to calculate simuitaneously the 
activation energy and reaction order. 

Using two equations simultaneously, it is possible to obtain three sets of 
values for E and n, which permit of the calculation of an average value for 
E and n as well as the confidence interval, which was impossible using the 
graphical method. As shown in Fig. 5 (original graphical method proposed 
by Reich and Stivala), the intersection region provides a reaction order 
close to 1, which corresponds to the value obtained by solving the 
equation system (0.96 f 0.15). This value is similar to that found by 
ANOVA when using the general analytical solution. The activation 
energy obtained by the Reich and Stivala method is only 2% lower than 
that corresponding to the general analytical solution. 

The method of Popescu and Segal is based on two sets of experimental 
data at different heating rates. Moreover, this method requires the 
previous determination of temperature at the maximum rate of decom- 
position as well as two characteristic temperatures. The equation pro- 
posed by Popescu and Segal is based on the mathematical assumption 
df/dZ’= constant. This is physically impossible because the first conver- 
sion derivative varies with temperature (or conversion). Thus, we believe 
that this hypothesis is seriously questionable. Moreover, this method is 

only valid when kinetic parameters are not affected by temperature. The 
application of the method of Popescu and Segal to our TG data led to an 
activation energy 20% lower than that obtained by the general anal~ical 
solution and the con~dence interval was too large to be acceptable 
(f19 kJ mol-I). 

Figure 6 summarizes the values of activation energy obtained (including 
the confidence interval) by the general analytical solution as well as by the 
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Fig. 6. Confidence intervals for activation energy by using various computing methods. 
Integral methods: a, general analytical solution; b, van Krevelen et al. (1951); c, Kissinger 
(1957); d, Horowitz and Metzger (1963). Differential methods: e, classical differential 
method; f, multiple linear regression differential method; g, Freeman and Carroll (1958); 
h, Vachusca and Voboril (1972). Special methods: i, Reich (1964); j, Friedman (1969); k, 
Reich and Stivala (1978); I, Popescu and Segal (1983). All methods: m, average of the 12 
previous methods. 

various representative computational methods reported in the literature. 
This graphic allows us to make the following a~rmations. 

(1) The activation energy calculated varies considerably depending on 
the calculation method used. 

(2) None of the types of method (integral, differential or special) 
defines a specific zone for the activation energy values. Specifically, 
integral or special methods give values for activation energies which may 
be sometimes low and sometimes high, in both cases. 

(3) Special methods are generally not accurate, i.e. they have too large 
a confidence interval. 

(4) The most accurate methods, i.e. those having the narrowest 
confidence interval, are the general analytical solution, the van Krevelen 
et al. method, the classical differential method and the multiple linear 
regression (MLR) differential method. 

Line m is the mean activation energy obtained by averaging the mean 
activation energies calculated by using the twelve methods considered in 
this work. This value is quite close to that found using the general 
analytical solution. However, the confidence interval is larger because of 
the significant differences between the values obtained with the different 
computation methods. 
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CONCLUSIONS 

Dynamic thermogravimetry, with linear temperature increase, is a 
useful tool to study the degradation of polymeric materials, to elucidate 
the reaction order and also to evaluate other kinetic parameters such as 
activation energy and frequency factor. Even if the overall process has no 
real significance with regard to the reaction mechanism, the apparent 
kinetic parameters, i.e. the Arrhenius doublet, are useful as a means of 
quantifying the rate of reaction and for design purposes. 

This paper shows that it is possible to develop a general analytical 
solution, providing a relationship between conversion and temperature for 
thermal decomposition reactions carried out by means of dynamic 
thermogravimetry. This analytical solution was obtained by integrating the 
rate equation by parts, resulting in a recurrent series. 

The application of the general analytical solution resulted in the 
following kinetic parameters for the thermal decomposition of poly- 
styrene: E = 130.1 f 0.3 kJ mol-’ and A* = 2.42 X 10’ s-‘. When truncat- 
ing the series at i = 2, the relative errors involved were as low as 0.1% for 
the activation energy and 4% for the pre-exponential factor. Because the 
thermal energy (RT) is not significant as compared to the activation 
energy, the truncation is entirely justified. 

The determination of kinetic parameters can be achieved by means of 
established methods. We made an exhaustive revision of these methods, 
which can be classified into three categories. We analyzed the results 
obtained by using the following methods: (1) integral methods: analytical 
solution (this work), van Krevelen et al. (1951), Kissinger (1957), 
IIorowitz and Metzger (1963) and Coats and Redfem (1965); (2) 
differential methods: classical, multiple linear regression, Freeman and 
Carroll (1958) and Vachusca and Voboril (1971); (3) special methods: 
Reich (1964), Friedman (1969), Reich and Stivala (1978) and Popescu and 
Segal (1983). Linear regression analysis was used to evaluate mean values 
of kinetic parameters as well as their confidence intervals. The activation 
energy calculated by using these different methods varied considerably: 
102-152 kJ mol-’ (integral methods), 126-143 kJ mol-” (differenti~ meth- 
ods) and 106-140 kJmol_’ (special methods). The accuracy was also 
variable depending on the method used. For integral and differential 
methods, the confidence intervals were lower than about 10 kJ mol-‘. The 
most accurate methods, i.e. those having the narrowest confidence 
interval, were the general analytical solution, the van Krevelen et al. 
method, the classical differential method and the multiple linear regres- 
sion differential method. In general, special methods cannot be considered 
accurate because the confidence interval was often between 10 and 
20 kJ mol-l. It is clear that the accuracy of the computing methods as well 
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as the values of the kinetic parameters calculated may be explained by 
considering the simplifications inherent in each of these methods in 
comparison with the general analytical solution. 
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